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Fig. 1. Illustration of the adaptive interaction paradigm in a MR environment demonstrating interaction zone adjustments

based on user-specific characteristics. In sub-figures (a)-(h) yellow-red gradients indicate dynamically scaled interaction

zones tailored to the user’s reach and position and blue-violet gradients represent fixed interaction zones based on the user’s

projected body position. This visualization highlights the capability to personalize interactions based on individual user

profiles, enhancing accessibility, inclusivity, and engagement across diverse physical conditions.

This paper introduces an adaptive interaction paradigm for Mixed Reality (MR) games, designed to enhance accessibility,
scalability, and responsiveness in large-scale MR environments. By leveraging depth-sensing technology and real-time 3D
skeletal tracking, the paradigm enables virtual elements to dynamically adjust to user movements, creating personalized and
inclusive interactions. Unlike traditional ixed interactionmodels, this approach tailors interaction zones and gesture thresholds
to individual user metrics, addressing limitations in current MR designs that fail to accommodate diverse physical abilities.
The proposed method employs an egocentric rule-based framework, ensuring low-latency, real-time performance while
maintaining transparency and adaptability. Privacy-by-design principles are integral to this approach, with local computation
and data anonymization preserving user conidentiality. The efectiveness of this adaptive paradigm is demonstrated through
a large-scale MR gameplay use case, with insights from over 5,000 gameplay sessions informing the reinement of interaction
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models. Beyond gaming, this paradigm establishes a foundation for broader applications in education, rehabilitation, and
accessibility technologies, advancing the state of user-centric MR interaction design.

CCS Concepts: ·Human-centered computing→Mixed / augmented reality; Accessibility systems and tools; ·Hardware

→ Sensor devices and platforms; · Social and professional topics→ Privacy.

Additional Key Words and Phrases: Mixed Reality, Depth-Sensing, Gesture Recognition, Real-Time Interaction, Accessibility,
Sensor Data, Privacy, Immersive Gameplay, User-Centric Design, Adaptive Systems

1 Introduction

Mixed Reality (MR) environments are transforming interaction paradigms by seamlessly blending physical and
digital worlds, creating immersive and engaging experiences across diverse applications. This paper introduces
an adaptive interaction paradigm speciically designed for large-scale MR setups, integrating LED displays and
RGBD cameras. By leveraging real-time 3D body tracking, the proposed approach enables virtual elements to
dynamically respond to user movements, fostering accessibility, inclusivity and highly responsive interactions.
The core contribution of this work lies in the adaptation of MR environments to enhance user interaction,

accessibility, and scalability. Traditional MR interaction paradigms often fail to dynamically adjust to individ-
ual user characteristics, resulting in inconsistencies in engagement and usability. To address this, we present
an adaptive interaction model that personalizes interaction zones and thresholds based on real-time skeletal
tracking, overcoming the limitations of ixed, one-size-its-all approaches. This rule-based approach ensures
real-time, low-latency performance for immersive MR experiences while remaining transparent and adaptable.
Interaction parameters such as thresholds and zones dynamically adjust based on user-speciic metrics, enabling
personalized interactions that accommodate diverse body dimensions and movement styles. Furthermore, the
paradigm incorporates stringent privacy safeguards, with data anonymized at the point of capture, computations
performed locally and only non-sensitive interaction data retained, adhering to privacy-by-design principles.
The efectiveness of this approach is demonstrated through a large-scale MR gameplay use case, with insights
from over 5,000 sessions informing the reinement of interaction models and performance metrics. The key
contributions of this work include:

• A scalable and adaptive interaction paradigm optimized for large-scale Mixed Reality environments.
• A rule-basedmethod for user-centric interactionmodelling, featuring real-time full-body gesture recognition
and dynamically adjustable interaction zones.
• Privacy-centric design principles that incorporate ethical strategies for secure and responsible deployment.
• Insights from extensive gameplay data to reine user-centric design and interaction models.

2 Related Work

Mixed Reality environments and depth-sensing technologies have been extensively explored in both academic
and industrial research contexts. This section surveys the foundational contributions and recent advancements
that underpin the adaptive interaction paradigm presented in this paper.

2.1 Real-Time Depth Data Acquisition

Depth-sensing methods, such as structured light, Time-of-Flight (ToF), and LiDAR, have enabled accurate 3D
spatial tracking in MR environments. Kinect’s introduction by Microsoft revolutionized gesture-based interactions
[Zhang 2012], ofering a low-cost solution for capturing full-body movements. More recently, advancements in
ToF cameras [Yu et al. 2020] have improved depth accuracy and reduced latency, enabling real-time interaction
in dynamic environments. These technologies have been widely adopted in applications ranging from games
[Casas et al. 2018] to healthcare [Hargaš and Koniar 2022] and education [Park et al. 2021]. Building on these
innovations and following a similar approach to DanceGraph [Sinclair et al. 2023], our method utilizes the ZED 2
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Stereo camera [Stereolabs 2025], which combines stereo vision with depth sensing to support large-scale MR
setups.

2.2 Gesture Recognition and Interaction

Gesture recognition has been a fundamental area of MR research, enabling intuitive interactions between users
and virtual environments. Early work by [Wachs et al. 2011] provided a comprehensive survey of vision-based
gesture interfaces, emphasizing the importance of skeletal tracking for user-centric design. More recent studies
have explored machine learning techniques for gesture classiication [Nogales and Benalcazar 2020], enhancing
accuracy and robustness in complex environments. For instance, Mediapipe [Lugaresi et al. 2019] demonstrated a
framework for real-time multi-modal gesture tracking, which inspired our approach to interaction modelling.

While ML-based gesture recognition approaches have demonstrated success in diverse applications [Wu 2024],
this paradigm adopts a rule-based method leveraging skeletal key-points. The decision to employ this approach is
driven by key considerations of latency, transparency and adaptability, making it particularly well-suited for real-
time MR experiences on large-scale displays. Trade-of between both approaches have been extensively evaluated
in the literature [Uzuner et al. 2009; van Ginneken 2017]. ML-based models, especially those utilizing deep
learning, often require signiicant computational resources for inference. This can introduce latency that disrupts
the immersive nature of MR interaction. In contrast, rule-based approaches operate deterministically and avoid
the overhead of neural network computations, achieving real-time performance with average gesture recognition
latency below 10ms on standard hardware. This ensures seamless interaction between the user and virtual
elements, critical for maintaining immersion. Rule-based methods ofer inherent transparency, as the decision-
making process is explicitly deined through mathematical rules [Cippitelli et al. 2016]. This deterministic nature
facilitates debugging and optimization, allowing real-time adjustment of thresholds with immediate feedback.
Conversely, ML-based approaches often act as a "black box", where gesture classiications are diicult to ine-tune,
complicating real-time adaptation processes. Further, a rule-based approach can be capable of dynamically
adjusting thresholds and interaction zones based on user-speciic metrics. In that context, ML models would
require retraining and extensive datasets to generalize across diverse users. For these reasons, our work is built
using a rule-based approach that achieves adaptability through simple parameter scaling, eliminating the need
for additional data collection.

2.3 Mixed Reality Interfaces

Mixed Reality environmental interaction extends gesture recognition by incorporating spatial relationships
between users and virtual objects. Collision detection and bounding box methods have been commonly employed
since early days of interactive graphics [Chung and Wang 1996], enabling object manipulation and proximity-
based triggers. Recent advancements include incorporating ergonomics into Virtual Reality experiences by
adjusting environments to promote inclusivity and enable dynamic personalization [Cabrera-Araya and Rojas-
Munoz 2024], aligning closely with our emphasis on adaptive and customized interaction. Additionally, in this
space, [Evangelista Belo et al. 2021] introduced XRgonomics, a study focused on ergonomic MR design principles
to improve user comfort and interaction eiciency. Further to this, recent research on the outstanding grand
challenges for Mixed Reality setups [Billinghurst 2021] emphasizes the unique complexities of MR interaction
and the potential of full-body input to enable more intuitive, multimodal experiences. Our paradigm addresses
these challenges by integrating adaptive, user-centric modelling to enhance interaction and inclusivity.
User studies have also been key in MR environmental interaction by ofering insights into user behaviour.

Research by [Derby and Chaparro 2022] demonstrated the importance of usability testing for iterative MR
development, highlighting the need for frameworks that can adapt to diverse user needs and provide intuitive,
accessible experiences. Building on these indings, our approach leverages real-time user feedback and analytics

ACM Games



4 • Llogari Casas

Fig. 2. Skeletal representations of four subjects with varying body dimensions illustrating the method’s ability to normalize

and adapt interaction zones based on individual height and arm span. This ensures inclusivity and consistency in gesture

recognition and interaction across diverse user profiles.

to reine interaction zones and gesture detection thresholds. This ensures seamless and adaptive interactions by
accommodating variations in body dimensions and movement mechanics.

3 User-Centric Modelling in MR Interactions

The term User-Centric Modelling refers to the process of designing interactions that adapt to the unique char-
acteristics, movements and abilities of each individual user. In the context of Mixed Reality experiences, this
involves tailoring interactions to the user’s physical dimensions and gestures to ensure an intuitive and inclusive
experience. We employ an egocentric approach, which centres interactions around the user’s perspective, where
the design and experience are adapted to their speciic viewpoint. As depicted in igure 3, our paradigm achieves
this by utilizing real-time body tracking and gesture recognition, normalizing skeletal data relative to the user’s
body size and dynamically adjusting interaction zones and thresholds accordingly.

3.1 MR Environment and Hardware Setup

The MR setup consists of a large-scale interactive environment that integrates a single RGBD camera and an LED
display to enable real-time adaptive interactions. The system tracks users’ full-body movements using 3D skeletal
tracking, allowing virtual elements to dynamically adjust based on individual motion and positioning. The RGBD
camera captures depth data and skeletal key points, facilitating interaction mapping without requiring multiple
sensor inputs. The LED display serves as the primary visualization interface, rendering interactive content that
responds to user movements. The spatial coniguration ensures that users can engage naturally with the MR
environment, with adaptive interaction zones calibrated based on each individual’s reach and mobility.

3.2 Consistent Multi-User Tracking

At the start of the MR experience, the approach identiies the primary user as the individual closest to the center
of the depth sensor’s ield of view. Let p� = (�� , �� , �� ) represent the position of user � in the camera’s coordinate
space, and c = (�� , �� , �� ) be the frame’s centroid. The distance of user � from the centroid is computed as:

�� = ∥p� − c∥2

where ∥ · ∥2 denotes the Euclidean norm. The primary user �primary is selected by minimizing the distance:

�primary = argmin
�
��
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The method assigns a unique identiier id� to each tracked user. These identiiers are stored in a priority queue
� :

� = [id1, id2, . . . , id�]

where id1 has the highest priority. This ensures that the original user retains control, even if other individuals enter
the scene. If tracking for the primary user is lost, due to occlusion or temporary exit, the method continuously
monitors for the reappearance of their identiier. Re-establishment occurs if:

idprimary ∈ current_visible_ids

where current_visible_ids is the set of identiiers currently detected by the depth camera. Once rediscovered, the
user regains their role as the primary user, ensuring persistent interaction.

3.3 User Coordinate Space

To ensure consistency across users with varying body sizes and positions (see igure 2), we deine the User
Coordinate Space as a local 3D coordinate space centered on a ixed reference point on the user’s body, typically
the center of the torso. This coordinate space allows for normalization of skeletal key-points, ensuring that all
movements and interactions are relative to the user’s body dimensions. By grounding computations in the user
coordinate space, interactions become personalized and scalable to diferent users.

Our implementation utilizes the ZED 2 AI Stereo Camera [Stereolabs 2025], which tracks the user’s body using
a 38-keypoint format. The camera provides 3D coordinates for key-points representing various body parts. In
this context, let p� = (�� , �� , �� ) denote the 3D position of a key-point � . To normalize these coordinates, they are
shifted relative to a reference key-point. Here, ptorso acts as a ixed origin in the user’s local coordinate space
ensuring that interactions are proportional to the user’s body dimensions.

p�,normalized = p� − ptorso

To account for variability in user size, proportions, and movement capabilities, the method normalizes skeletal
data relative to individual body dimensions. A scaling factor �scale is computed as:

�scale =
Arm Spanuser
Arm Spandefault

,

where Arm Spanuser is the measured distance between the user’s outstretched hands, and Arm Spandefault repre-
sents a reference value. This factor is applied to normalize interaction thresholds, ensuring consistent gesture
recognition across users:

pnormalized
� = �scale · p� .

3.4 Interaction Zones

Interaction zones deine spatial regions where speciic gestures and actions trigger events, acting as the bridge
between the user’s physical movements and corresponding virtual responses. These zones are dynamically
computed in the user coordinate space and are associated with one or more normalized key-points. For instance,
a “wave” gesture can be detected when the hand key-point phand enters a predeined region:

Wave Zone: �min < �hand < �max, �min < �hand < �max

In this case, the boundaries of these zones are not static and are recalculated in real-time based on the user’s
skeletal dimensions and movement range. This ensures that the zones remain functional and intuitive across
varying user positions relative to the depth camera. To this extend, interaction zones can be categorized into
static, dynamic, and adaptive types, depending on their purpose and behaviour:
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• Static Zones. These zones remain ixed relative to the user’s normalized body space. For example, a zone
directly above the user’s head might trigger a łjumpž action when the head key-point phead enters it.
• Dynamic Zones. These zones move in response to the user’s actions. For instance, in a catching task, a
zone corresponding to an on-screen falling object might move dynamically, requiring the user’s hand to
align with it.
• Adaptive Zones. These zones adjust their size and sensitivity based on the user’s movement patterns.
For users with limited mobility, larger zones can ensure that smaller gestures still trigger the desired
interactions.

Complex interactions often require simultaneous engagement with multiple zones. For example, a “clap”
gesture can be detected when the left-hand key-point pleft_hand and the right-hand key-point pright_hand enter
overlapping interaction zones:

|�left_hand − �right_hand | < �, |�left_hand − �right_hand | < �

where � is a small threshold value. As users move closer to or farther from the camera, interaction zones are
recalibrated to maintain consistent behaviour. For instance, if a user steps back, the interaction zones expand
proportionally to compensate for the reduced precision in tracking at greater distances.

3.5 Real-Time Full-Body Gesture Detection

In order for our approach to achieve gesture detection in an immersive real-time MR environment, we leverage
3D skeletal key-points to interpret user movements dynamically. The foundation of this detection lies in the
accurate tracking of 3D skeletal key-points. Let p� (�) = (�� (�), �� (�), �� (�)) represent the position of key-point �
at time � . The relative movement of these key-points over time form the basis of a gesture detection. For instance,
the relative position vector between two key-points, such as the hands, is given by:

vrelative = phand1 (�) − phand2(�)

The velocity of a speciic key-point, used to identify fast movements like swipes, is calculated as:

vvelocity =
p� (�2) − p� (�1)

Δ�

where Δ� = �2 − �1 is the time interval between two frames.
Gestures are classiied based on predeined movement patterns and velocity thresholds. Our approach supports

a variety of gestures commonly used in MR environments, including:

• Swipe: This gesture is identiied when the hand velocity in the horizontal direction exceeds a threshold:

|vhand,� | > threshold

• Raise Hand: This gesture is detected when the vertical position of the hand exceeds the height of the head:

�hand > �head

• Wave: A waving motion is identiied by detecting periodic lateral hand movements within a speciic range:

�hand(�) oscillates with period � and amplitude �

• Pointing: This gesture is recognized by analysing the alignment of hand and arm key-points in a straight
line.

For further implementation details, see section 3.8 for pseudocode detailing core gesture routines.
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Fig. 3. Color-coded stages of the adaptive interaction pipeline for Mixed Reality environments. Raw depth sensor data

is processed to perform skeletal tracking and pose estimation, extracting joint angles and velocities. Gesture recognition

informs interaction mapping for motion-based event triggering, while adaptive scaling personalizes interaction zones based

on user-specific characteristics. The pipeline provides real-time feedback and logs user engagement metrics for performance

evaluation and iterative refinement.
ACM Games
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3.6 Environment Interaction Across Realities

Unlike traditional interaction paradigms that rely on input devices such as controllers or keyboards, our method
utilizes the user’s natural movements to drive the immersive experience. Environmental interaction, in this
context, refers to the dynamic and reciprocal engagement between the user and virtual elements within the Mixed
Reality environment. Virtual objects displayed on large screens respond dynamically to the user’s movements,
facilitating intuitive and seamless interactions between both worlds. This approach ensures a consistent and
responsive connection between the user and the virtual environment, enhancing both the realism and accessibility
of the MR experience. To model these environmental interactions mathematically, we represent the user and
virtual objects as bounded regions in a 3D coordinate space. Let the bounding box of the user be deined as:

Bu = {x ∈ R
3 | �min ≤ � ≤ �max, �min ≤ � ≤ �max, �min ≤ � ≤ �max}

where the limits are derived dynamically from the user’s skeletal key-points. Similarly, virtual objects are deined
as:

Bo = {x ∈ R
3 | � ′min ≤ � ≤ �

′
max, �

′
min ≤ � ≤ �

′
max, �

′
min ≤ � ≤ �

′
max}

Interaction events are then triggered when the user’s bounding box intersection with a virtual object’s bounding
box is non-empty:

Collision = (Bu ∩ Bo) ≠ ∅

Beyond static collision detection, dynamic object interactions are supported through parametrized models. For
example, object manipulation such as picking up or throwing relies on continuous tracking of the user’s skeletal
motion:

• Picking Up: A virtual object is łpicked upž if the hand key-point enters and remains within the bounding
box for a duration Δ�hold:

Δ�hold ≥ �threshold

• Throwing: The velocity vector of a user’s hand is computed during the release phase to simulate the
object’s trajectory:

vthrow =

phand(�release) − phand (�grab)

�release − �grab

• Proximity Activation: Interaction zones are deined as hyper-rectangles in 3D space. Activation occurs
when the user’s key-points satisfy:

pkeypoint ∈ BBoxzone

3.7 Adaptive Interaction Dynamics

To enhance accessibility, the paradigm dynamically adjusts sensitivity and thresholds based on user movement
patterns. This adaptability is implemented through two mechanisms: an initial calibration phase and real-time
adjustments using the last � frames of skeletal data. During the initial calibration phase, users are prompted
to perform a small set of predeined gestures (e.g., swipe, raise hand) which the system uses to compute initial
thresholds for velocity and range of motion. These parameters initialize the interaction zones and sensitivity
levels. Let p� (�) = (�� , �� , �� ) represent the position of key-point � at time � . The user’s range of motion for a given
key-point � is computed over a calibration period �cal as:

�� = max
� ∈[0,�cal ]

p� (�) − min
� ∈[0,�cal ]

p� (�)

During active use, the system monitors the user’s skeletal keypoints across the last � = 15 frames and applies
low-pass smoothing to adjust zone boundaries in real time. Interaction zones are then scaled proportionally to
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�� , ensuring they match the user’s natural motion. The average velocity �̄� of a key-point is calculated during
calibration as:

�̄� =
1

�cal

∫ �cal

0













�p� (�)

��













��

A gesture detection threshold �threshold is then set as:

�threshold = � · �̄�

where � > 1 is a proportionality constant to account for natural variability in movement. The user’s maximum
reach pmax and minimum reach pmin are recorded as:

pmax =max
�

p� (�), pmin =min
�

p� (�)

These values deine boundaries for adaptive interaction zones. Once calibration is completed, its parameters
are continuously adapted in real-time by analysing the user’s recent movement data over the last � frames. Let
p� (�� ) represent the position of key-point � at frame � . To perform an adjustment to the velocity threshold, the
instantaneous velocity of a key-point � at frame � is approximated as:

�� (�� ) =
∥p� (�� ) − p� (��−1)∥

Δ�

where Δ� is the time interval between frames. The average velocity over � frames is:

�̄� =
1

�

�︁

�=�−�+1

�� (�� )

If �̄� decreases signiicantly (e.g., due to fatigue), the velocity threshold �threshold is adjusted:

�threshold,new = � · �̄�

where � is a sensitivity scaling factor. To handle interaction zones expanding or contracting, their boundaries are
recalculated based on the user’s recent range of motion:

�recent� =
�

max
�=�−�+1

p� (�� ) −
�

min
�=�−�+1

p� (�� )

The zone size �� is updated as:

�� = � · �
recent
�

where � is a proportionality constant to balance sensitivity and usability. Sudden noise and anomalies are
identiied by analysing deviations from the mean trajectory:

Δp� (�� ) = p� (�� ) −
1

�

�︁

�=�−�+1

p� (�� )

Signiicant anomalies (∥Δp� (�� )∥ > �) are ignored to ensure stability in interactions. This combination of initial
calibration and real-time adjustments ensures that a wide range of user abilities are accommodated. Users with
limited mobility beneit from expanded interaction zones and reduced velocity thresholds, while more agile users
experience interactions that scale dynamically to their capabilities. The reliance on recent frame data allows the
method to provide a personalized and responsive experience for all users. The following constant values were
used across all tests:

• Gesture velocity threshold scaling constant: � = 1.25
• Adaptive sensitivity factor: � = 0.85
• Interaction zone scaling constant: � = 1.15
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• Proximity threshold for gestures involving multiple key-points (e.g., clapping): � = 0.12m

3.8 Pseudocode Examples for Rule-Based Gesture Recognition

To support reproducibility and broader adoption of the proposed adaptive interaction paradigm, this section
outlines pseudocode examples of the core gesture recognition routines. These rules are implemented on top of
a real-time skeletal tracking pipeline using egocentric coordinates (see section 3.3) and all parameters can be
adjusted at runtime to accommodate user variation. While the examples below reference the user’s right side (e.g.,
right hand, right elbow), the detection logic is symmetrical and can be equally applied to the left side depending
on context or user preference.

3.8.1 Swipe Gesture Detection. The swipe gesture serves as a baseline for interaction due to its simplicity and
high recognition rate across user groups. Detection relies on horizontal hand velocity exceeding a threshold,
provided the hand is raised above the torso to avoid unintentional triggers. This gesture proved robust in both
seated and standing postures, with minimal false positives under natural movement.

ALGORITHM 1: Swipe Gesture Detection

Input: 3D skeletal keypoints at current frame �� , 3D skeletal keypoints at previous frame ��−1, time delta Δ� ,
threshold ��ℎ���ℎ���

Output: Gesture status (Swipe or None)

1 �� ←
�� [right_hand] .�−��−1 [right_hand] .�

Δ�
;

2 �ℎ��� ← �� [right_hand] .�;

3 ������ ← �� [torso] .�;

4 if �ℎ��� > ������ then

5 if |�� | > ��ℎ���ℎ��� then

6 return "Swipe Detected";

7 return "No Gesture";

3.8.2 Wave Gesture Detection. To detect repetitive waving, the system analyzes horizontal hand oscillations
within a short time window. This approach captures gesture periodicity and amplitude, allowing the system
to distinguish intentional waves from noise. The wave gesture is well-suited for public displays and ambient
interactions, particularly when users are at a distance from the sensing hardware.

ALGORITHM 2: Wave Gesture Detection

Input: Sequence of � horizontal hand positions {�1, �2, ..., �� }, amplitude threshold ���� , period window �
Output: Gesture status (Wave or None)

1 ������������ ← 0;

2 for � ← 2 to � − 1 do
3 if (��−1 < �� ) and (�� > ��+1) or (��−1 > �� ) and (�� < ��+1) then

4 ������������ ← ������������ + 1;

5 ��������� ← max(�1, ..., �� ) −min(�1, ..., �� );

6 if ������������ ≥ 2 and ��������� ≥ ���� then

7 return "Wave Detected";

8 return "No Gesture";

3.8.3 Raise Hand Gesture Detection. A simple yet efective gesture, "raise hand" is detected when the user’s
hand exceeds the vertical position of the head. This gesture is especially useful in accessibility scenarios, where
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limited lateral motion might hinder more complex interactions. Its binary nature makes it a reliable trigger in
onboarding or calibration stages.

ALGORITHM 3: Raise Hand Gesture Detection
Input: 3D skeletal keypoints �� at current frame
Output: Gesture status (Raised or None)

1 �ℎ��� ← �� [right_hand] .�;

2 �ℎ��� ← �� [head] .�;

3 if �ℎ��� > �ℎ��� then

4 return "Raise Hand Detected";

5 return "No Gesture";

3.8.4 Pointing Gesture Detection. This gesture identiies when the arm forms a straight line from shoulder to
hand, interpreted as a pointing action. It uses the angle between elbow and hand vectors, and is especially relevant
for MR applications where users indicate targets, directions or menu selections. Proper detection depends on
reliable skeletal joint tracking.

ALGORITHM 4: Pointing Gesture Detection

Input: 3D skeletal keypoints �� (right_hand, right_elbow, right_shoulder), angle threshold ����
Output: Gesture status (Pointing or None)

1 �1 ← �� [right_elbow] − �� [right_shoulder];

2 �2 ← �� [right_hand] − �� [right_elbow];

3 � ← arccos
(

�1 ·�2
∥�1 ∥ ∥�2 ∥

)

;

4 if � < ���� then

5 return "Pointing Detected";

6 return "No Gesture";

This procedure is executed per frame and can be extended to include debounce logic or oscillation detection
for gestures like waving. All spatial calculations are performed in the user-centered coordinate space ensuring
consistency across diferent user body types.

4 Real-Time Analytical Driven Interaction

By quantifying user interactions in real time, the analytics component serves as a foundation for reining
mechanics, optimizing interaction thresholds and tailoring experiences to the speciic needs and abilities of
individual users. The module continuously records data from the depth-enabled camera and interaction events,
capturing a comprehensive array of metrics to evaluate user behaviour and its performance. Key data points
include the 3D coordinates of skeletal key-points, such as the hands, head and torso, tracked over time to
monitor and analyse user movements with precision. Additionally, interaction metrics such as session duration,
object manipulations, and the frequency of speciic actions are tracked. All data is timestamped and stored in
a structured format, facilitating both real-time analysis and post-session evaluations. Interaction events are
modelled as functions of depth, time, and spatial relationships where puser and pobject are the user and object
positions, respectively, and � is the timestamp.

� = � (puser, pobject, �),

Beyond real-time adjustments, the method also stores data for post-session analysis, enabling the identiication
of trends in user behaviour. This, for instance, could be preferred gestures, frequently interacted objects and
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areas of friction in interaction mechanics, which assist on evaluating the efectiveness of interactive zones and
gesture recognition models.

5 Fixed and Adaptive Interaction Comparison

In MR systems, interaction zones are often deined based on ixed screen-space projections of the user’s skeletal
position. This ixed interaction paradigm, while simple to implement, lacks adaptability and fails to account for
variations in user-speciic factors such as height, reach and mobility constraints. Figure 1 illustrates a comparative
analysis between the conventional ixed interaction approach (blue-violet heat-map) and the proposed adaptive
paradigm (yellow-red heat-map). As seen in subigures (a)-(h), the ixed interaction zone remains constant
regardless of the user’s pose or physical capabilities. This results in potential accessibility issues, particularly
for users with limited mobility, as seen in sub-igure (d), where a seated user is unable to efectively reach the
designated target zone. Conversely, when using the adaptive paradigm, interaction zones are dynamically scaled
to match the user’s reach and pose in real time. The interaction area is adjusted based on key skeletal metrics,
including arm span and joint lexibility, to ensure that interaction elements remain within an accessible range for
each user. This dynamic approach enables a more intuitive and equitable experience across a diverse range of
users, including those with varying physical abilities.

6 Secure and Ethical MR Interaction

To ensure a robust ethical and privacy-focused design for protecting user data while enabling secure and
responsible deployment, all collected data is anonymized at the point of capture. Unique identiiers replace
personal information, ensuring that no data can be traced back to individual users. Skeletal key-points and
interaction events are logged without any association to identifying characteristics, allowing the method to
concentrate exclusively on interaction analytics and user modelling. All computations related to depth-sensing
data are performed locally on the local unit, eliminating the need to transmit raw unprocessed frames. This
minimizes the risk of data breaches and ensures that sensitive visual information remains unexposed. Once
processed, only interaction outputs, such as gestures and collisions, are logged, removing potentially sensitive
data. The output of computations is securely transmitted to an SQL database, which exclusively stores interaction
data and session metrics. The database is designed to avoid retaining raw visual information, adhering to privacy
best practices while maintaining the integrity of session analytics. The paradigm explicitly avoids user proiling,
ensuring that no behavioural proiles are created based on user interactions. This guarantees that the approach
operates transparently, focusing solely on immediate interaction feedback without building persistent user
models.

7 Evaluating User Behaviour in MR Gameplay

To assess the efectiveness of our Mixed Reality paradigm, we implemented it as a gaming experience with
varying diiculty levels (see igure 4). Over 5,000 gameplay sessions have been analysed. Gameplay durations
exhibit signiicant variability, ranging from as short as 7 seconds to over 110 seconds on average (see igure 5a),
relecting the diverse skill levels and engagement patterns of players. Higher diiculty games often result in
shorter sessions and lower scores, highlighting the need for carefully balancing mechanics to sustain player
interest and ensure accessibility. As depicted in igure 5b, easier and medium diiculty games demonstrate a clear
preference among players for more approachable challenges, ofering a balance between diiculty and sustained
engagement.
For predeined and controlled gesture sets, rule-based approaches provide comparable or superior accuracy

to ML-based methods. For example, in a controlled test of 1,000 gestures across ive users, the rule-based
method achieved a gesture recognition accuracy of 97.5%, comparable to ML-based methods trained on similar
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Fig. 4. Illustration of the proposed adaptive MR interaction paradigm in action. The images depict users engaging with a

large-scale LED display powered by a depth-sensing camera, enabling real-time body tracking and gesture-based interactions

with varying interaction and dificulty levels.

Fig. 5. Distribution of plays and session duration across dificulty levels. The Easy level accounts for the highest number of

sessions, reflecting its appeal to a broader audience and accessibility for less experienced players. Conversely, Hard levels

show fewer sessions, likely due to their demanding nature, which may discourage prolonged or repeated atempts by players.

datasets. Furthermore, rule-based methods are less prone to over-itting or producing bias, as they rely on
explicitly deined criteria rather than learned patterns. Further to that, rule-based approaches require minimal
computational resources compared to ML-based ones, making them more cost-efective for deployment on
large-scale setups. Additionally, their lightweight nature ensures compatibility with a broader range of hardware,
from standard CPUs to embedded systems, enabling scalability to diverse MR environments. While the rule-based
approach excels in scenarios requiring low latency and transparency, it also serves as a foundation for future
hybrid approaches. Lightweight ML models can complement the rule-based approach by handling edge cases
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and learning user-speciic preferences over time, providing a pathway for integrating the strengths of both
approaches.
The results depicted in the graphs on igure 6 demonstrate that the interaction thresholds are dynamically

adapted based on user characteristics, ensuring accessibility and usability across diverse proiles. In the irst graph
on the left-hand side, interaction thresholds are consistently higher than arm span measurements, indicating that
the system extends reach allowances to facilitate interaction. Adults show the highest interaction thresholds
due to their naturally larger arm span, while mobility-impaired users have slightly reduced arm spans but
still beneit from extended interaction thresholds, likely compensating for reach limitations. The graph on the
centre highlights the correlation between user height and interaction thresholds. Taller users have the largest
interaction thresholds, relecting their increased reach, while children receive an extended threshold beyond their
actual height to enhance usability. This suggests that the system adjusts interaction distances ergonomically,
ensuring that users of all sizes can comfortably interact within the MR environment. The graph on the right-
hand side focuses on mobility constraints, demonstrating how the system personalizes interaction thresholds
to accommodate movement limitations. Users with severe mobility restrictions have the lowest interaction
thresholds, minimizing the need for extensive movement. Those with moderate restrictions have an intermediate
threshold, striking a balance between accessibility and usability. Unrestricted users exhibit the highest interaction
threshold, relecting their ability to engage in a broader interaction space. Overall, these results conirm that
the egocentric interaction model efectively adjusts to physical attributes and mobility constraints, ensuring
inclusivity in MR environments. The system dynamically scales interaction thresholds to provide ergonomic
comfort and personalized usability, accommodating diverse user needs while maintaining intuitive interaction
capabilities.

Fig. 6. Personalized Interaction Thresholds Based on User Characteristics. (Let) Interaction threshold variations based on

arm span across diferent user profiles (child, adult, and mobility-impaired users). (Center) Interaction thresholds relative to

user height, showing increased thresholds for taller users. (Right) Mobility constraints influencing interaction thresholds,

where users with restricted mobility have lower interaction ranges than those with unrestricted mobility.

During our analysis of over 5,000 gameplay sessions, we observed notable diferences in gesture performance
across user groups, particularly when considering age and physical characteristics. For instance, children often
faced challenges with the "pointing" gesture, which requires precise alignment between the hand, elbow, and
shoulder. These diiculties were primarily attributed to shorter limb lengths, limited arm extension range, and less
stable posture control during extended interactions which are factors consistent with anthropometric indings on
human body modelling [Casas 2015]. In contrast, broader gestures such as "swipe" and "raise hand" exhibited
high recognition rates across all demographics. Their success can be linked to their larger motion envelopes and
the use of velocity-based thresholds, which are more forgiving to anatomical variation and ine motor control.
These indings showcase the importance of tailoring gesture sets to account for diferences in body scale, motor
skills and posture when designing inclusive MR experiences.
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8 Limitations and Future Work

Despite its strengths, the current paradigm has limitations that open avenues for further research. One no-
table limitation is the reliance on pre-deined gesture recognition rules. Implementing hybrid approaches via
a combination of rule-based and adaptive ML models could address this by enabling real-time customizable
gesture detection. These models could allow the system to continuously learn from user interactions, adapting
to unique movement patterns while maintaining the low-latency performance required for MR environments.
However, integrating machine learning techniques presents challenges such as increased computational demands
for real-time and the need for robust model interpretability to maintain system transparency. Performance in
multi-user scenarios is another area requiring further reinement. While the primary user-tracking algorithm
works well under controlled conditions, dynamic environments with multiple users introduce challenges such
as occlusion, overlapping skeletal data and individuals moving out of the camera’s ield of view. Addressing
these challenges requires the development of optimized tracking algorithms, potentially through synchronized
multi-view approaches or sensor fusion techniques that combine data from multiple depth cameras to ensure
consistent responsiveness and robust tracking across diverse spatial conigurations. Additionally, intelligent
user identiication strategies using probabilistic tracking models could enhance the accuracy of user-switching
mechanisms in shared environments. Expanding applications beyond gaming remains another avenue for future
work. In educational environments, MR systems could support collaborative learning experiences by enabling
shared interaction zones and real-time performance feedback. Similarly, professional training simulations could
beneit from adaptive learning mechanisms that respond to user proiciency, ensuring personalized experiences.
In healthcare, the paradigm could be extended to rehabilitation exercises tailored to patients’ motor capabilities
and progress tracking.

Further to this, the adaptive paradigm described in this paper could be extended beyond large-scale installations
to both Augmented Reality and Virtual Reality setups. In AR environments, such as glasses-based systems, the
limited ield of view and dynamic lighting conditions may require stricter gesture thresholds and more robust
occlusion handling. The calibration model could be ported to AR by mapping interaction zones relative to the
user’s forward gaze rather than a ixed screen plane. In fully immersive VR systems, where users are occluded
from the external world, spatial boundaries and visual anchors must be rendered in 3D space to guide interaction.
While the current method was implemented with a single RGBD camera, multi-view or headset-embedded depth
sensing could substitute this setup. In both contexts, the same rule-based adaptive logic remains valid, provided
that skeletal key-points are reliably tracked.
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